Direct Evidence of Iron Uptake by the Gram-Positive Siderophore-Shuttle Mechanism without Iron Reduction
نویسندگان
چکیده
Iron is an essential element for all organisms, and microorganisms produce small molecule iron-chelators, siderophores, to efficiently acquire Fe(III). Gram-positive bacteria possess lipoprotein siderophore-binding proteins (SBPs) on the membrane. Some of the SBPs bind both apo-siderophores (iron-free) and Fe-siderophore (iron-chelated) and only import Fe-siderophores. When the SBP initially binds an apo-siderophore, the SBP uses the Gram-positive siderophore-shuttle mechanism (the SBPs exchange Fe(III) from a Fe-siderophore to the apo-siderophore bound to the protein) and/or displacement mechanism (the apo-siderophore bound to the SBP is released and a Fe-siderophore is then bound to the protein) to import the Fe-siderophore. Previously, we reported that the Bacillus cereus SBP, YxeB, exchanges Fe(III) from a ferrioxamine B (FO) to a desferrioxamine B (DFO) bound to YxeB using the siderophore-shuttle mechanism although the iron exchange was indirectly elucidated. Synthetic Cr-DFO (inert metal FO analog) and Ga-DFO (nonreducible FO analog) are bound to YxeB and imported via YxeB and the corresponding permeases and ATPase. YxeB exchanges Fe(III) from FO and Ga(III) from Ga-DFO to DFO bound to the protein, indicating that the metal-exchange occurs without metal reduction. YxeB also binds DFO derivatives including acetylated DFO (apo-siderophore) and acetylated FO (AcFO, Fe-siderophore). The iron from AcFO is transferred to DFO when bound to YxeB, giving direct evidence of iron exchange. Moreover, YxeB also uses the displacement mechanism when ferrichrome (Fch) is added to the DFO:YxeB complex. Uptake by the displacement mechanism is a minor pathway compared to the shuttle mechanism.
منابع مشابه
Gram-positive siderophore-shuttle with iron-exchange from Fe-siderophore to apo-siderophore by Bacillus cereus YxeB.
Small molecule iron-chelators, siderophores, are very important in facilitating the acquisition of Fe(III), an essential element for pathogenic bacteria. Many Gram-negative outer-membrane transporters and Gram-positive lipoprotein siderophore-binding proteins have been characterized, and the binding ability of outer-membrane transporters and siderophore-binding proteins for Fe-siderophores has ...
متن کاملCoordination Chemistry of Microbial Iron Transport
This Account focuses on the coordination chemistry of the microbial iron chelators called siderophores. The initial research (early 1970s) focused on simple analogs of siderophores, which included hydroxamate, catecholate, or hydroxycarboxylate ligands. The subsequent work increasingly focused on the transport of siderophores and their microbial iron transport. Since these are pseudo-octahedral...
متن کاملIron and Virulence in Francisella tularensis
Francisella tularensis, the causative agent of tularemia, is a Gram-negative bacterium that infects a variety of cell types including macrophages, and propagates with great efficiency in the cytoplasm. Iron, essential for key enzymatic and redox reactions, is among the nutrients required to support this pathogenic lifestyle and the bacterium relies on specialized mechanisms to acquire iron with...
متن کاملA new mechanism for membrane iron transport in Pseudomonas aeruginosa.
Various biochemical and biophysical studies have demonstrated the existence of a novel iron-uptake mechanism in Pseudomonas aeruginosa, different from that generally described for ferrichrome and ferric-enterobactin in Escherichia coli. This new iron-uptake mechanism involves all the proteins generally reported to be involved in the uptake of ferric-siderophore complexes in Gram-negative bacter...
متن کاملIdentification and characterization of a novel-type ferric siderophore reductase from a gram-positive extremophile.
Iron limitation is one major constraint of microbial life, and a plethora of microbes use siderophores for high affinity iron acquisition. Because specific enzymes for reductive iron release in gram-positives are not known, we searched Firmicute genomes and found a novel association pattern of putative ferric siderophore reductases and uptake genes. The reductase from the schizokinen-producing ...
متن کامل